Abstract

Crystal structure, morphological features, and hydrogen-sensing properties of thick film sensors of TiO2 nanotubes (NTs) impregnated with nanoparticles of elements of Group 10, viz., nickel, palladium, and platinum, having average grain size of about 25, 20, and 20 nm, respectively, are presented. The sensitivity is observed to be higher for Pd/TiO2 NTs than for Pt/TiO2 NTs. Ni/TiO2 NTs exhibited very poor sensitivity. X-ray photoelectron spectroscopy (XPS) studies confirm reduction of the oxide layer of palladium nanoparticles, which, in turn, is responsible for the generation of Ti3+ ion in TiO2 NTs through hydrogen spillover. For Pt/TiO2 NTs, only reduction of the oxide layer over Pt nanoparticles takes place without any spillover effect. For Ni/TiO2 NTs, neither NiO nor TiO2 undergoes any reduction. Changes in the Fermi level difference of PdO and TiO2 along with Ti3+ generation synergistically operate for Pd/TiO2 NTs, whereas the difference in Fermi levels of PtO and TiO2 alone operates for Pt/TiO2 NTs during sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.