Abstract
The effects of Ni(P) layer thickness (5 μm and 0.7 μm) on the microstructural behavior and electrical reliability of electroless-nickel electroless-palladium immersion gold (ENEPIG) (substrate-side) surface-finished printed circuit boards (PCBs) with Sn–3.0Ag–0.5Cu (SAC305) solder joints under current stressing of 9000 A/cm2 have been investigated. An organic solderability preservative (OSP) surface finish was applied on the chip-side. (Cu,Ni)6Sn5 and Cu6Sn5 intermetallic compound (IMC) layers were formed on the chip-side (the interface between SAC305 and the OSP surface finish) and substrate-side (the interface between the ENEPIG surface finish and SAC305) solder joints after reflow. The thicknesses of the (Cu,Ni)6Sn5 and Cu6Sn5 IMC layers of the chip- and substrate-side of the normal- and thin-ENEPIG/SAC305/OSP solder joints increased with increasing current stressing time, regardless of the nickel phosphorous (Ni(P)) layer thickness. The total IMC thicknesses of normal-ENEPIG/SAC305/OSP solder joints were relatively thinner than those of thin-ENEPIG/SAC305/OSP solder joints under current stressing for 50–120 h. This is the reason why only a P-rich Ni layer was formed at the interface between SAC305 solder and the Cu pad in the thin-ENEPIG/SAC305 solder joints under current stressing. Otherwise, the P-rich Ni and Ni(P) layers remained at the interface of the normal-ENEPIG/SAC305 solder joint under current stressing. The Ni(P) layer of the ENEPIG surface finish played an important diffusion barrier role by suppressing IMC growth and movement toward the SAC305 solder under current stressing. In the electrical evaluation, the time to failure at the normal-ENEPIG solder joint was relatively longer (approximately 2.2 times) than that of the thin-ENEPIG solder joint. Therefore, the relatively thick Ni(P) layer contained in the ENEPIG/SAC305/OSP solder joint is expected to attain higher electrical reliability under the electromigration test.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.