Abstract

Graphic Processor Units (GPUs) on the latest models of computer graphic cards generate significant amounts of heat. In fact, the required dissipation rate is so large that cooling fans mounted on heat-sinks must be used to maintain satisfactory GPU temperatures. The packaging of these fans is small and similar designs have been used for cooling of electronic packaging for decades. The appropriate application of these fans as well as their optimal design for minimal noise generation and maximum air movement has not kept pace with that of large industrial sized fans. Where space limitations allow and heat transfer requirements dictate, blower type fans are implemented because they are capable of delivering relatively high flow rates in high impedance environments when they are compared to more traditional axial flow fans. The operation of these blower fans, particularly at high speeds, results in the generation of noise which is experienced by the user. Both computer manufacturers and consumers alike have deemed this noise to be excessive and annoying. The fan model predictions and the operational reality of the higher fan speeds needed to deliver increased air flow both lead to the reality of higher noise levels. The purpose of this study was to experimentally investigate the realized thermal and acoustic performance of a blower style fan-sink mounted on an advanced graphics port (AGP) card. The goal of this investigation was to determine what thermal benefits of higher flow rate are realized by the blower fan at the expense of increased noise emissions. The experimental results of thermal measurement results spanning the operating speed of the fan are presented and accompanied by the noise data. These data include both traditional acoustic analysis techniques using sound pressure and power level measurements as well as psychoacoustic metrics. The result of the thermal testing suggests that the rate of improvement in thermal performance decreases as the blower fan speed increases. As expected, an increase in noise level was also observed. Of particular interest were the results of the psychoacoustic analysis which indicate a similar detrimental effect with increased fan speed for some metrics, while other metrics indicate no change across the operating speed range of the blower fan.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.