Abstract

Abstract Epoxy resin is a thermoset polymer and is one of the main candidates for radiation shielding application. In this investigation, carbon, hydrogen, and nitrogen analysis showed that the presence of the light element of nitrogen in cured epoxy could lead to more effective neutron shielding ability compared with physical curing. The effect of neutron irradiation of amine-cured epoxy was studied by infrared spectroscopy. Neat epoxy samples were irradiated at the core of the Tehran Research Reactor in the same neutron flux in the order of 1013 (neutron/cm2×s) at several radiation times (up to 12 h). The results indicated that neutron irradiation caused moderate changes in peak absorption locations of epoxy spectra. This result indicates that, in this neutron flux and irradiation time, the molecular structure of epoxy remains stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.