Abstract

The bioaccessibility of heavy metals in soil is closely related to their potential risk. Therefore, developing techniques for reducing it needs considerable attention. In this study, we aimed to co-precipitate soil As(V) through an in situ formation of Fe oxides, thereby reducing its bioaccessibility. Soil As(V) was co-precipitated by introducing 2% Fe-nitrate (w/w) and 30% water (v/w) into soil at pH ~7. Two different neutralizing agents (NaOH and CaO) were used to induce the precipitation of Fe oxides, and their effects on the speciation of As were investigated. In all the stabilized soils, the exchangeable As fraction decreased, and the fraction of As bound to amorphous Fe oxides increased by a factor of more than 1.4. In contrast, a marked decrease in bioaccessibility of As was achieved using NaOH (40% to 7%). X-ray absorption spectroscopy analysis demonstrated that highly bioaccessible forms of calcium iron arsenate (yukonite and arseniosiderite) could be generated in CaO-stabilized soil. Our study found that neutralizing agents may play an important role in stabilizing As(V) and lowering its bioaccessibility through determining the type of formed Fe oxides in soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.