Abstract
The implementation of reservoir computing using resistive random-access memory as a physical reservoir has attracted attention due to its low training cost and high energy efficiency during parallel data processing. In this work, a NbOx/Al2O3-based memristor device was fabricated through a sputter and atomic layer deposition process to realize reservoir computing. The proposed device exhibits favorable resistive switching properties (>103 cycle endurance) and demonstrates short-term memory characteristics with current decay. Utilizing the controllability of the resistance state and its variability during cycle repetition, electrical pulses are applied to investigate the synapse-emulating properties of the device. The results showcase the functions of potentiation and depression, the coexistence of short-term and long-term plasticity, excitatory post-synaptic current, and spike-rate dependent plasticity. Building upon the functionalities of an artificial synapse, pulse spikes are categorized into three distinct neural firing patterns (normal, adapt, and boost) to implement 4-bit reservoir computing, enabling a significant distinction between “0” and “1.”
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.