Abstract

To evaluate shear bond strength of Molloplast-B soft liner attached to different acrylic surfaces (smooth, rough, and Sticktech net fiber-reinforced interfaces) after 3000 thermal cycles. Sixty-nine specimens were fabricated by attaching Molloplast-B soft liner to acrylic bases of three interfaces (n= 23); smooth (Group 1, control), rough (Group 2), and Sticktech net fiber-reinforced interface (Group 3). The specimens underwent 3000 thermocycles (5 and 55 degrees C) before being subject to a shear bond test at 2 mm/min crosshead speed. Debonding sites were investigated using an optical microscope at 40x magnification. Bond failures were categorized as adhesive, cohesive, or mixed. Mean (SD) bond strength values (MPa) were: 0.71 (0.15); 0.63 (0.07); and 0.83 (0.12) for smooth, rough, and fiber-reinforced acrylic interfaces, respectively. The mean values were analyzed using one-way ANOVA and Bonferroni post hoc test for pairwise comparisons (p< or = 0.05). The net fiber-reinforced acrylic interface exhibited a statistically significantly higher bond strength value when compared to smooth and rough acrylic interfaces (P= 0.003 and P= 0.000, respectively). Modes of failure were mainly cohesive (91%), followed by mixed failures (9%). Molloplast-B exhibited a stronger bond to StickTech Net fiber-reinforced surfaces when compared to smooth and rough acrylic interfaces after thermocycling. This may enhance prosthesis serviceability during clinical use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call