Abstract

We study the effect of electron doping on the bonding character and stability of two-dimensional (2D) structures of elemental boron, called borophene, which is known to form many stable allotropes. Our ab initio calculations for the neutral system reveal previously unknown stable 2D ϵ-B and ω-B structures. We find that the chemical bonding characteristic in this and other boron structures is strongly affected by extra charge. Beyond a critical degree of electron doping, the most stable allotrope changes from ϵ-B to a buckled honeycomb structure. Additional electron doping, mimicking a transformation of boron to carbon, causes a gradual decrease in the degree of buckling of the honeycomb lattice that can be interpreted as piezoelectric response. Net electron doping can be achieved by placing borophene in direct contact with layered electrides such as Ca2N. We find that electron doping can be doubled by changing from the B/Ca2N bilayer to the Ca2N/B/Ca2N sandwich geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.