Abstract

BackgroundAlthough routinely used in assisted reproductive technology, human sperm cryopreservation is not an entirely successful procedure. This study determined the effect of nerve growth factor (NGF) supplementation of cryopreservation medium on post-thaw viability, motility, intracellular nitric oxide (NO) concentration, and DNA fragmentation of human spermatozoa in asthenozoospermic men.MethodsSemen samples were collected from 25 asthenozoosprmic men and divided into the following groups (n = 5/group): fresh semen (control); frozen-thawed semen without treatment; frozen-thawed semen with NGF treatment (0.5, 1, and 5 ng/ml). Prior to dividing the asthenozoospermic samples, 200 μl of each sample was collected for NGF content assessment by ELISA and then compared with normozoospermic semen samples (25 normozoospermic men). Sperm motility and viability were assessed according to WHO criteria. Furthermore, intracellular nitric oxide and DNA fragmentation were evaluated by Flow Cytometry.ResultsNGF content was significantly higher in normozoospermic compared with asthenozoospermic men. Cryopreservation of asthenozoospermic semen samples significantly decreased sperm viability and motility, and increased intracellular nitric oxide concentration and DNA damage (p < 0.01). In asthenozoospermic frozen–thawed samples treated with 0.5 ng/ml exogenous NGF, we observed a significantly increased viability, motility, and decreased DNA fragmentation (p < 0.05), but intracellular nitric oxide concentration was not reduced. The other high doses (1 and 5 ng/ml) had no significant effect on the variables.ConclusionSupplementation with exogenous NGF could have partial and limited protective effect during cryopreservation of human spermatozoa but further research is needed to evaluate the possible clinical applications.

Highlights

  • Routinely used in assisted reproductive technology, human sperm cryopreservation is not an entirely successful procedure

  • Since there is limited evidence for the cryoprotective effects of nerve growth factor (NGF) on human spermatozoa especially in asthenozoospermic samples, we investigated the effects of the addition of NGF to the freezing and thawing extender on viability, motility, intracellular nitric oxide concentration, and DNA fragmentation, and assessment of semen NGF content in asthenozoospermic men

  • NGF content in normozoospermic and asthenozoosprmic men NGF concentration was measured with enzyme-linked immunosorbent assay (ELISA) kits

Read more

Summary

Introduction

Routinely used in assisted reproductive technology, human sperm cryopreservation is not an entirely successful procedure. This study determined the effect of nerve growth factor (NGF) supplementation of cryopreservation medium on post-thaw viability, motility, intracellular nitric oxide (NO) concentration, and DNA fragmentation of human spermatozoa in asthenozoospermic men. During cryopreservation spermatozoa are affected by physical and chemical stresses that cause damages in membrane lipid composition, motility, viability, acrosome status, and fertilization capacity of spermatozoa [2, 3]. NGF stimulates sperm motility [12, 16, 17], viability [13] and facilitates sperm cell acrosome reactions [12], and play an important role in the proliferation and differentiation of leydig cells and testosterone production [18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call