Abstract
The effects of neonatal hypothyroidism on the kinetic properties of Na+, K+ -ATPase from rat brain microsomes were examined. Neonatal hypothyroidism resulted in decreased Na+, K+ -ATPase activity compared to control samples (7.4 +/- 1.48 and 29.8 +/- 2.30 micromol Pi/h/mg protein, respectively, P < 0.001). Substrate kinetics studies with ATP, Na+ and K+ revealed that there were generalised decreases in Vmax. For ATP, Na+ and K+, activities resolved into two kinetic components in the control group. In hypothyroid animals, the low-affinity component for ATP was absent. The opposite pattern (i.e. an absence of the high-affinity component) was noted for Na+. For K+, although both kinetic components were discernible in neonatal hypothyroid brain microsomes, the Km of the high-affinity component was significantly higher (P < 0.001) compared to control samples. In the control group, the enzyme displayed allosteric behaviour at high concentrations of Mg2+; in hypothyroid animals, the pattern was completely allosteric. The Na+, K+ -ATPase enzyme from the hypothyroid brain microsomes bound two molecules of ATP rather than one, unlike in the control animals. Our results thus indicate that neonatal hypothyroidism results in an impairment of microsomal Na+, K+ -ATPase activity in the rat brain, together with subtle alterations in the kinetic properties of the enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.