Abstract

In asphyxiated newborns iron, released from heme and ferritin and deposited in the brain, contributes to neurodegeneration. Because hypothermia provides neuroprotection, newborn mammals, showing spontaneously reduced body temperature, might avoid the iron-mediated neurotoxicity. Therefore, we decided to study the effects of body temperature and chelation of iron with deferoxamine on iron accumulation in the brain of three weeks old rats exposed neonatally to a critical anoxia. At the age of two days, newborn rats were exposed to anoxia in 100% nitrogen atmosphere. Rectal temperature was kept at 33 °C (typical of the rat neonates), or elevated to a level typical of febrile (39 °C) adults. Control rats were exposed to atmospheric air in the respective thermal conditions. Half of the rats exposed to anoxia under hyperthermic conditions were injected with deferoxamine (DF), immediately after anoxia and 24 h later. Regional changes in cerebral iron deposition were examined in the frontal cortex, the hippocampus and the striatum, using iron histochemistry, when the rats reached the age of three weeks. Increased iron staining was found in neurons of each of the three cerebral regions in rats exposed to neonatal anoxia under hyperthermic conditions and the iron accumulation was prevented by postanoxic DF injection. In conclusion, febrile body temperature amplifies cerebral hyperferremia, which might induce neurodegenerative disturbances in the brain. On the other hand, a protection against the brain hyperferremia can be achieved by both the reduced physiological neonatal body temperature and by postasphyxic DF administration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.