Abstract
In order to study the effect of negative valve overlap on combustion and emission characteristics of a homogeneous charge compression ignition engine fueled with natural gas and hydrogen, the test and the simulation were conducted using an engine cycle model coupling the chemical kinetic reaction mechanism under different valve timing conditions. Results show that the internal EGR formed by using negative valve overlap could heat the inlet mixtures and improve the spontaneous ignition characteristic of the engine. The residual exhaust gas could slow down the heat release rate, decrease the pressure rise rate and the maximum combustion temperature, and reduce the NOx emission simultaneously. Among the three NVO schemes, the strategy of changing the intake valve opening timing individually can create the least power loss, and the symmetric NVO strategy which changes both the exhaust valve closing timing and the intake valve opening timing simultaneously can achieve the best heating effect of inlet mixtures and the satisfactory decrease of combustion temperature, as well as the largest reduction of NOx emission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.