Abstract

Auxetic materials have emerged to be a new type of novel engineering materials with unique material properties. This paper reports the postbuckling behaviors of pressure loaded graphene-reinforced metal matrix composite (GRMMC) laminated cylindrical shells under the influence of in-plane negative Poisson’s ratio (NPR) in temperature environments. The GRMMCs have temperature-dependent material properties which can be determined using an extended micromechanical model of Halpin–Tsai type. A cylindrical shell is made of GRMMC layers of different graphene volume fractions to achieve a piece-wise functionally graded (FG) pattern. The postbuckling equations for the pressure-loaded GRMMC laminated cylindrical shells are derived using the Reddy’s third order shear deformation shell theory with the effects of von Kármán-type kinematic nonlinearity and temperature variation being included. Applying the singular perturbation technique in conjunction with a two-step perturbation approach, the governing equations for the shell postbuckling problem are solved. The results show that the postbuckling behaviors of pressure-loaded GRMMC laminated cylindrical shells are affected substantially by the in-plane NPR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.