Abstract

In this paper, the effect of pulse-type motions caused by forward directivity that can release huge amounts of energy in a short time period is studied on a telecommunication tower. Since telecommunication towers have longer periods, they are not as affected by seismic forces. Nevertheless, near source earthquakes characterized by high velocity and velocity pulses can change the behavior of these structures. For this reason, a telecommunication tower located near active faults was selected in this study. Considering the probable earthquake magnitude at the site and the distance of the tower from adjacent faults, nine simulated pulses and three near-fault earthquake records with forward directivity are selected and applied to a 3D finite element model of the tower. The results of nonlinear dynamic analysis, i.e., displacements and damage in the tower, indicate that the maximum displacement and drift ratio of the tower under the pulses are obviously affected by the ratio of the structure period to pulse period. When this ratio is decreased and close to 1.0, the maximum displacement and drift ratio are sharply increased and cause large displacements in the tower.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call