Abstract

This work presents a simulation study on the impact of natural ventilation on the thermal performance and thermal comfort of residential buildings of different forms in the hot-dry climate of Amman, the capital of Jordan. Three existing triple-storey residential buildings with different forms, i.e., rectangular, L-shape, and U-shape, are taken as case studies. Models with similar construction and dimensions of the buildings under investigation are designed using the OpenStudio plugin SketchUp software. Two rooms within these buildings have been considered for simulation with the aid of the EnergyPlus simulator for two cases: the basic case with no ventilation and the case with ventilation. The thermal parameters, including the air temperature, relative humidity, air speed, and mean radiant temperature of both rooms, have been extracted from the simulation. The thermal performance of these buildings is analyzed based on the indoor air temperature and mean radiant temperature, while the thermal performance is investigated via the ASHRAE-55 adaptive model. The results show that the rectangular-shaped building has the best thermal performance in unventilated conditions for the middle room on the middle floor (Room 1). In contrast, the U-shape shows better results for the west-northern room on the same floor (Room 2). On the other hand, introducing natural ventilation to the buildings reduces the indoor temperature and, subsequently, enhances the thermal performance where the buildings transform to be within the comfort zone most of the time, according to the ASHRAE-55 adaptive model. Generally, rectangular and U-shaped buildings show comparable thermal performance, while L-shaped buildings have relatively the worst performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call