Abstract
Black carbon (BC) plays a potentially important role in the availability of pollutants in soils and sediments. Recent evidence points to the possible attenuation of the high surface activity of raw BC by natural substances. We studied the effects of soil humic (HA) and fulvic (FA) acids on the surface properties and affinity for organic compounds of synthesized wood charcoal. Char powder suspended in a solution of HA or FA was loaded with organic matter via adsorption, evaporation of the water, or coflocculation with Al3+. These treatments were chosen to simulate initial and more advanced stages of environmental exposure. Coevaporation dramatically reduced the N2 Brunauer-Emmett-Teller total surface area of the char, but only moderately the CO2 cumulative surface area up to 1.4 nm. Organic compound adsorption was suppressed in proportion to molecular size, benzene < naphthalene < phenanthrene and 1,2,4-trichlorobenzene < phenanthrene, for humics in the adsorbed and coflocculated states, respectively. Humic substances also increased the linearity of the isotherms. The model we propose assumes that humic substances are restricted to the external surface where they act as pore blocking agents or competitive adsorbates, depending on the temperature and adsorbate size. Nitrogen is blocked from the internal pore space due to stiffness at 77 K of humic strands extending into pore throats, giving an artificially low surface area. Together with previous results, this finding indicates that N2 may not detect BC microporosity in geosorbents. At higher temperatures (CO2, 273 K; organics, 293 K), humic strands are more flexible, allowing access to interior pores. The counterintuitive molecular size dependence of adsorption suppression by humics is due to a molecular sieving effect in pores in which the adsorption space available to the organic compound is more and more restricted to external sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.