Abstract
ABSTRACTInvasion by exotic trees into riparian areas has the potential to impact terrestrial and aquatic systems. To test the effect of different streamside tree species on the aquatic food web in a stream in Montana, we compared decomposition rates of leaf litter and invertebrate assemblages associated with the leaf litter of the exotic Acer platanoides and the dominant native Populus trichocarpa trees. Macroinvertebrate family richness, evenness, and diversity increased with days of aquatic processing; however, there was no effect of leaf species. Leaves of the A. platanoides were associated with 70% greater density of macroinvertebrates of the family Nemouridae. This family consists primarily of detritivores and had the greatest overall density and frequency of occurrence relative to other macroinvertebrate families. The density of a family of predatory macroinvertebrates (Rhyacophilidae) was also generally (73%) greater in association with A. platanoides than P. trichocarpa leaves. The density of Ephemerellidae and Rhyacophilidae increased over time. In contrast to studies comparing leaves of exotic vs. native trees, we observed no difference in leaf decomposition rates; however, the amount of leaf inputs are likely to differ between native and invaded forests. The results indicate that replacement of native riparian trees with exotics affected the most common family of macroinvertebrates and possibly a common family of predatory macroinvertebrates (Rhyacophilidae), which may affect the detrital food web.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.