Abstract

Using a mesoscale coarse-grained model and dissipative particle dynamics, the mechanical properties of a cross-linked elastomer filled with surface-functionalized carbon nanotubes are investigated under uniaxial stretching, depending on nanotube length, nanotube bulk density, and crosslink density. Importantly, the system is deformed at equilibrium, allowing the cross-linked chains to be fully relaxed. Our results suggest that for a composite with chemical couplings between polymer and fillers, there actually exist different regimes of elastomer reinforcement, manifesting themselves in the stress–strain response, which is found to be dramatically dependent on the nanotube length L and the characteristic network mesh size : while the effect of the filler particles is relatively small at L −1 ∼ 1, there is a sharp increase in the mechanical modulus when L −1 ≫ 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.