Abstract
The mechano-physical properties of a sintered magnesia matrix containing 0–8wt% nano-titania (η-TiO2) have been investigated. The crystalline phases and microstructure characteristics of the refractory specimens sintered by solid state at 1500°C for 4h in an electric furnace were studied by X-ray diffraction (XRD), and scanning electron microscopy (SEM) with microanalysis (EDS), respectively. The physical properties are reported in terms of density and porosity. The mechanical behavior was evaluated by a cold crushing strength (CCS) test. As a result, it was found that the presence of η-TiO2 in the magnesia matrix induced titanates formation (Mg2TiO4 and CaTiO3), which improved the sintering process. Nano-titania also produced a fine-grained microstructure with intergranular second phase particles, which remain at the boundary and exert a pinning effect. In general, the addition of 5wt% of η-TiO2 contributed to reach a maximum increment in physical and mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.