Abstract

The excited state dynamic studies have been carried out to investigate the effects of micellar surface charge on the photophysics of protonated 6-methoxyquinoline (6MQ+) in anionic, sodium dodecylsulphate (SDS), cationic, cetyltrimethylammonium bromide (CTAB) and neutral, triton X-100 (TX100) surfactant at premicellar, micellar and postmicellar concentrations in aqueous phase at room temperature. At premicellar concentrations of SDS, there is a slight decrease in emission intensity and at micellar and postmicellar concentrations, increase in emission intensity and blue shift of spectrum has been observed. The blue shift in fluorescence spectrum and slight increase in quantum yield are attributed to incorporation of solute molecule to the micelles. Edge excitation red shift (EERS) in fluorescence maximum of 6MQ+ has been observed in all the surfactant solutions studied. The EERS has been ascribed in terms of solvent relaxation process. In SDS surfactant system, due to heterogeneous restricted motion of solvent molecules, the solvent viscosity increases which results in an increase in net magnitude of EERS. The fluorescence decay components of 6MQ+ fit with multi exponential functions in all the micellar systems studied. The location of the probe molecule in micellar systems is justified by a variety of spectral parameters such as refractive index, dielectric constant, ET (30), EERS, average fluorescence decay time, radiative and non radiative rate constants, and rotational relaxation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call