Abstract

Cold-bonded Fly Ash Aggregate (CFAA), as an alternative to natural coarse aggregates, can prepare more lightweight, economical, and sustainable concrete. However, CFAA concrete has insufficient durability, which hinders its application in a salt-corrosion environment. Nanosilica (NS) has an advantage of high activity and is generally used as an efficient mineral admixture in engineering. This study aims to improve the strength and durability of CFAA concrete by incorporating NS. To this end, compression tests, splitting tensile tests, and microscopic analyses were performed to investigate the mechanical properties of the concrete containing different NS dosages. Subsequently, the dry–wet and freeze–thaw durability tests were conducted to evaluate the salt-corrosion resistance and the frost resistance in the water, Na2SO4 solution, and Na2CO3 solution. The results show the compressive and splitting tensile strength peak at 2 wt% NS dosage. In this instance, the concrete has an optimum microstructure and exhibits desirable salt-corrosion resistance in the late stage of dry–wet cycles. During freeze–thaw cycles, NS could improve the frost resistance of the concrete but scarcely diminished internal damage under sulfate attack. The study explores the long-term performance of NS-modified CFAA concrete, providing a simple and effective method to mitigate the concrete deterioration in a harsh environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call