Abstract

Poly(butylene terephthalate) (PBT) was blended with nanoscale fully vulcanized acrylic rubber (FVAR) powders in a twin extruder, and the FVAR powders were dispersed well in PBT from scanning electron microscopy (SEM) and transmission electron microscope (TEM) investigation. The isothermal crystallization kinetics of PBT/FVAR blends were investigated by differential scanning calorimeter (DSC) and simulated by Avrami model. Equilibrium melting temperature was estimated by the nonlinear Hoffman–Weeks relation. The active energy (Δ E) and nucleation parameters ( K g) increased with the addition of FVAR, suggesting that FVAR particles hindered the crystallization; however more content FVAR had a lower Δ E and K g because FVAR powders acted as heterogeneous nuclei in the nucleation of crystallization and facilitated the crystallization of PBT. The crystallization ability followed the order: PBT > PBT/FVAR6 > PBT/FVAR3 > PBT/FVAR1 when undercooling was considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.