Abstract

ABSTRACTThe present work deals with numerical modeling of mixed convection flow in a two-sided lid driven inclined square enclosure filled with water-Al2O3 nanofluid. The limiting cases of a cavity heated from below and cooled from above and the one differentially heated are recovered respectively for inclination angles 0° and 90°. The moving walls of the cavity are pulled in opposite directions with the same velocity and maintained at constant but different temperatures while the remaining walls are kept insulated. The numerical resolution of the studied problem is based on the lattice Boltzmann method. A parametric study is conducted and a set of graphical results is presented and discussed to illustrate the effects of the presence of nanoparticles and enclosure inclination angle on fluid flow and heat transfer characteristics. The governing parameters of this problem are the Richardson number (varied from 0.1 to 106), the nanoparticles volume fraction (varied from 0 to 0.04) and the inclination angle (varied from 0° to 180°). The critical conditions leading to the transition from monocellular flow to multicellular flow and vice versa are determined. In the common ranges of Richardson number and inclination angle where both monocellular and tri-cellular patterns coexist, the heat transfer is seen to be strongly reduced by the latter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call