Abstract

Abstract In the recent past, the research involving the fabrication and processing of reinforced polymer nanocomposites has increased significantly. These new materials are enabling in the discovery, development and incorporation of improved nanocomposite materials with effective manufacturing methodologies for several defense and industrial applications. These materials eventually will allow the full utilization of nanocomposites in not only reinforcing applications but also in multifunctional applications where sensing and the unique optical, thermal, electrical and magnetic properties of nanoparticles can be combined with mechanical reinforcement to offer the greatest opportunities for significant advances in material design and function. This paper presents two methods and material systems for processing and integration of the nanomaterial constituents, namely: (a) dispersing alumina nanoparticles using high energy mixing (using ultrasonication, high shear mixing and pulverization) and (b) electrospinning technique to manufacture nanofibers. These reinforced polymer nanocomposites and the processing methodologies are likely to provide effective means of improving the interlaminar properties of woven fiber glass composites compared to the traditional methods such as stitching and Z-pinning. The electrospinning technology relies on the creation of nanofibers with improved molecular orientation with reduced concentration of fiber imperfections and crystal defects. Electrospinning process utilizes surface tension effects created by electrostatic forces acting on liquid droplets, creating numerous nanofibers. These nanofibers thus have potential to serve as through-the-thickness reinforcing agents in woven composites. While the electrospun nanofibers provide bridging through-the-thickness reinforcement, the use of the nanoparticles influences the thermo-physical properties and provides an effective means from commercially available nanolevel material configurations to form reinforced polymer nanocomposites. Studies indicate that their mechanical behavior and performance however depends on incorporation, and functionalization of these alumina nanoparticles. Both these methods and material systems provide effective means for integrating the nanomaterial constituents into traditional fiber composite systems. In particular, this paper discusses the experimental study of the processing and delamination (interlaminar failure) characteristics (via Mode I fracture toughness assessment) of reinforced composite systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.