Abstract
In order to assess a new strategy for DNA vaccine formulation and delivery, plasmid encoding Plasmodium yoelii MSP-1 C-terminal was formulated with newly designed nanoparticle—an anionic ternary complex of polyethylenimine and γ-polyglutamic acid (pVAX-MSP-1/PEI/γ-PGA), and intravenously administered to C57BL/6 mice in four different doses, three times at 3-week interval. Antibody response as determined by ELISA, IFA and Western blot, was dose-dependent and subsequent challenge with 105P. yoelii-infected red blood cells revealed 33–60% survival in repeated experiments at a dose of 80μg pDNA/mouse. IgG subtypes and cytokine levels in the serum and culture supernatants of stimulated spleen cells were also measured. Antigen-specific IgG response provoked by the DNA vaccination was dominated by IgG1 and IgG2b. Although the elevation of IL-12p40 and IFN-γ was marginal (P≥0.354) in the coated group, interleukin-4 levels were significantly higher (P≥0.013) in the coated group than in the naked or control group, suggesting a predominant Th2-type CD4+ T cell response. These results therefore, overall indicate the possibility of selection and optimization of DNA vaccine formulation for intravenous delivery and may be useful in designing a nanoparticle-coated DNA vaccine that could optimally elicit a desired antibody response for various disease conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.