Abstract

Jet fuel-based nanofluid fuel has been proposed for improving the energy density and utilization efficiency of jet fuel that is widely applied in aircraft powered by aviation turbine engines. To recognize the evaporation behavior of the formed liquid film as a jet fuel-based nanofluid sprayed onto the engine wall or blades, this paper presents the evaporation and deposition characteristics of the jet fuel-based nanofluid liquid film adhering on the hydrophilic substrate. The changes in contact line, contact angle, volume, and deposition pattern during liquid film evaporation under different substrate temperatures, different nanoparticle concentrations, and different kinds of nanoparticle additions were investigated. The effect of nano-Al addition on the evaporation kinetics and deposition pattern of the nano-Al/jet fuel (nAl/JF) nanofluid fuel liquid film was explored. Repeated pinning and de-pinning of contact lines during evaporation occurred, resulting in the formation of concentric multi-ring deposition patterns. The addition of nano-Al increased the evaporation rate and shortened the evaporation lifetime, demonstrating a promotion effect on jet fuel liquid film evaporation. The existence of an energy barrier shows that the movement of three-phase contact lines on the hydrophilic solid surface presented not a continuous sliding behavior but a "stick-slip" behavior, and there were multiple jumps in contact lines and contact angles. Finally, a comparison was made with the deposition pattern of jet fuel liquid films with different graphite and Fe nanoparticle additions during evaporation. The mechanism of deposition phenomena was deeply revealed by the analysis of capillary flow and Marangoni recirculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call