Abstract

Nanocrystalline nickel of different grain sizes (8–28 nm) was produced by electrodeposition using Watt's bath. Saccharine addition to the bath and pulsed current deposition were effective in lowering the grain size of the deposits. The grain size and microstrain of deposits was determined by X-ray diffraction analysis. The microhardness of nanocrystalline Ni ranged between 572 and 724 kg/mm 2. The electrochemical behavior of nanocrystalline Ni was evaluated in 1 mol/l H 2SO 4 and compared with that of coarse-grained nickel. All the nickel samples exhibited active–passive potentiodynamic polarization behavior. The zero current potential, passive current density and breakdown potential generally increased with decrease in grain size. The increased passive current density for nanocrystalline nickel confirmed the defective nature of passive film that forms on nanocrystalline nickel. The tendency for localized corrosion was lower in case of nanocrystalline nickel as indicated by increased breakdown potential. Tafel and linear polarization tests revealed that the corrosion rate of freshly exposed surfaces of Ni decreased with grain size, thereby indicating greater hindrance to anodic dissolution in nanocrystalline Ni. The magnitude of compressive microstrain in the Ni deposits increased with decrease in grain size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call