Abstract

Nanopatterned brushes of a thermo-responsive polymer, poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA), displaying a collapse temperature in the physiological range were synthesized for grafting diameters from a few micrometers down to 35 nm. The reversible collapse transition of the nanobrushes was studied in water as a function of their lateral confinement, down to ensembles of brushes containing only approximately 300 chains. The confinement results in a considerable broadening of the collapse transition and in an increase of the degree of vertical swelling, which can be explained by the internal structure of the nanodroplets derived from a theoretical model of dry nanobrushes. These results enable the rational design of responsive surfaces having a tunable topography engineered at the nanometer scale, which is of direct interest for the development of soft nanoactuators and new substrates for cell adhesion studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call