Abstract

The aim of this paper is to assess the properties of Mamaia (MM) grape pomace polyphenolic extract loaded onto pristine and functionalized MCM-41 mesoporous silica as potential ingredients for nutraceuticals or cosmetics. The chemical profile of hydroalcoholic polyphenolic extracts, prepared either by conventional extraction or microwave-assisted method, was analyzed by reverse-phase high-performance liquid chromatography with photodiode array detector (HPLC-PDA) analysis, while their radical scavenger activity (RSA) was evaluated using DPPH (2,2-diphenyl-1-picrylhydrazyl radical) and ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assays. The extract-loaded materials were characterized by Fourier transform infrared (FTIR) spectroscopy, N2 adsorption-desorption isotherms, thermogravimetric analysis, as well as RSA (DPPH and ABTS assays). The polyphenols release profiles from pristine and functionalized (with mercaptopropyl, propyl sulfonic acid, cyanoethyl and propionic acid moieties) MCM-41-type supports were determined in phosphate buffer solution (PBS) pH 5.7. For selected materials containing embedded phytochemicals, cellular viability, and oxidative stress level on immortalized mouse embryonic fibroblast cell line (NIH3T3) were evaluated. A more acidic functional groups linked on silica pore walls determined a higher amount of phytochemicals released in PBS. The extract-loaded materials showed a good cytocompatibility on tested concentrations. The embedded extract preserved better the RSA over time than the free extract. The polyphenols-loaded MCM-41-type silica materials, especially MM@MCM-COOH material, demonstrated a good in vitro antioxidant effect on NIH3T3 cells, being potential candidates for nutraceutical or cosmetic formulations.

Highlights

  • During the winemaking process, sugars from grapes are converted in alcohol, but the main bioactive compounds are not greatly affected by the fermentation, almost 70% of phytochemicals being preserved [1,2,3]

  • The polyphenolic extracts were characterized using several spectrophotometric methods for the group quantification of polyphenols, flavonoids, anthocyanin pigments, as well as radical scavenger determination based on DPPH and ABTS assays (Table 1)

  • The chemical profiling of prepared polyphenolic extracts was accomplished by reverse-phase high-performance liquid chromatography (HPLC)-PDA analysis, in which were identified up to twelve compounds from 23 available standards

Read more

Summary

Introduction

Sugars from grapes are converted in alcohol, but the main bioactive compounds are not greatly affected by the fermentation, almost 70% of phytochemicals being preserved [1,2,3]. The valorization of grape pomace is important considering either the environmental issues [5] or the applications of its bioactive compounds [6,7,8]. Grape pomace is an abundant and valuable source of polyphenolic compounds, which are receiving an increasing interest due to their health benefits exerting antioxidant, anti-inflammatory, antibacterial, anticarcinogenic, antidiabetic, and cardioprotective effects [15,16,17,18,19], and great potential for food and cosmetics industries. Gallic acid has shown significant anticancer activity in leukemia [16]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.