Abstract

AbstractThe effect of nanoclay loading on the alteration of tensile and dynamic mechanical properties of aramid short fibre‐filled styrene butadiene rubber composites was investigated. In all the composites, 20 phr of N330 black was used. Dynamic mechanical thermal analysis was used to investigate the viscoelastic damping at lower dynamic strains. Compressive hysteresis was evaluated to characterize higher strain static damping properties. Matrix–fibre interaction and filler distribution were investigated using morphological analyses. Matrix–filler interface, estimated by the half height width of the tan δ peak, plays a major role in energy dissipation. The matrix–fibre interaction parameter shows a similar trend with low strain tensile stress values. Nanoclay addition to the composites leads to improved elongation at break and frequency damping properties. Compressive hysteresis reflects no improvement of hysteresis with nanoclay loading. Dynamic storage moduli, matrix–fibre interaction parameter and energy dissipation properties of the short fibre‐filled composites are negatively affected by nanoclay addition. However, ultimate elongation is improved markedly on nanoclay addition. In respect of tensile strength and elongation at break values, two composite samples (KF5NC10 and KF10NC10) offer optimum properties. Copyright © 2009 Society of Chemical Industry

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.