Abstract

In this paper, the fatigue life of natural rubber (NR)/styrene-butadiene rubber (SBR) compound is evaluated experimentally. The parameters investigated are the NR, SBR, and nanoclay loading in the composition, strain amplitude, and the frequency of the fatigue test. Fracture surfaces of NR/SBR/nanoclay compound are investigated using scanning electron microscopy (SEM). The results show that by increasing NR and the nanoclay loading in the rubber composition, the fatigue life of the rubber increases. For the nanoclay, a threshold value exists beyond which the fatigue life of the rubber compound decreases. It is also observed that by increasing the test frequency, the fatigue life of the rubber compound decreased. Tensile, hardness, and dynamic mechanical thermal analysis (DMTA) tests were also performed to evaluate the mechanical and thermal properties of the compound. SEM results show that by increasing the strain amplitude, the test specimens fail softly, and the addition of nanoparticles roughens the fracture surface and increases the fatigue life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call