Abstract

Among the unique properties of polymer nanocomposites, electrical conductivity deserves a prominent place due to their wide applications in conducting adhesive, electromagnetic shielding and sensors. The present work focuses on the effect of cerium-doped titanium dioxide (Ce-TiO2) nanoparticles on the conductivity studies of poly (n-butyl methacrylate), or PBMA, nanocomposites at different temperatures. The frequency-dependent alternating current (AC) electrical conductivity of PBMA/Ce-TiO2 nanocomposites has been found to increase with increase in temperature and the concentration of Ce-TiO2 nanoparticles. The activation energy calculated from the AC electrical conductivity has been found to decrease with frequency and increasing temperatures. The frequency exponent factor also showed a decrease with frequency, indicating the hopping conduction in the nanocomposites. The maximum AC conductivity has been observed for the composites with 7 wt.% sample. The direct current (DC) conductivity of PBMA/Ce-TiO2 composites was also enhanced with the addition of Ce-TiO2 nanoparticles. Experimental and theoretical investigations based on Scarisbrick, Bueche, McCullough and Mamunya modeling were undertaken to understand the observed DC conductivity differences induced by the addition of Ce-doped TiO2 nanoparticles to PBMA matrix. The experimental conductivity showed good agreement with the theoretical conductivity observed using the Mamunya model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.