Abstract

Nano-C doped Fe-sheathed MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> tapes with different doping levels were fabricated using a powder-in-tube method and an in situ reaction. The effects of nano-C doping on the transition critical temperature, microstructure, critical current density, and flux pinning of MgB <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> tapes were studied. Compared to the un-doped tapes, critical current density J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> for all the C-doped samples with different doping level was enhanced by more than an order of magnitude in magnetic fields above 10 T. This result indicates that flux pinning was effectively enhanced by the nano-C doping. Highly dispersed nanoparticles and the substitutions of B by C are proposed to be responsible for the improvement of J <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</sub> -B properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.