Abstract

Abstract The current study intended to investigate the viability and efficacy of performance measurement by incorporating one of the most hazardous leather wastes, that is, leather buffing dust and nanofillers as reinforcing constituents within recycled poly(ethylene-vinyl acetate) as a matrix with maximum leather fiber-loading of 1:1, using a mill followed by hot-press molding. The samples were tested to evaluate the physicomechanical characteristics including tensile, compressive strength, density, abrasion-resistance, adhesion-strength, hardness, tear-resistance, compression and resilience, damping, and water-absorption as per the standard ASTM/SATRA/ISO testing methods. The thermoanalytical methods, namely thermalgravimetric analysis and differential scanning calorimetry, have been employed to simulate the performance, including the effectiveness of blended-mix through glass-transition and crystallization temperature. Furthermore, morphological properties of the fabricated composites have been explored using scanning electron microscopy and energy-dispersive spectroscopy analysis. In addition, the attenuated total reflection-Fourier-transform infrared spectroscopy was performed to examine the physicochemical molecular structure, chemical bonding, and functional groups of the neat recycled EVA (ethylene-vinyl acetate) copolymer and leather buffing dust/recycled EVA polymer composites. Throughout this study, the physicomechanical characteristics of leather buffing dust/recycled EVA composites were ameliorated by optimizing the operating parameters of the hot-press compression molding process through the central composite design approach in response surface methodology. The obtained results of the fabricated novel composites were certainly splendid for a value-added application in footwear, structural, floor-covering, and transportation domains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call