Abstract

The paper is a new approach which aims to evaluate the relation between surface aspects (wettability and roughness) of materials based on titanium with native passive TiO(2) as untreated samples and TiO(2) nanotubes as treated discs respectively, their electrochemical stability in artificial saliva, and fibroblast cell behavior. Ti/TiO(2) modified electrodes as nanotubes with 120 nm as diameter were obtained using an electrochemical method as anodizing and surface analysis as SEM, AFM and contact angle measurements were performed to obtain topographical features and wettability. The TiO(2) nanotube structured oxide films electrochemical growth increases the stability of titanium surfaces. The electrochemical behavior of the Ti/TiO(2) nanotube surface was evaluated by corrosion parameters obtained from Tafel plots and electrical parameters for proposed circuits from electrochemical impedance spectroscopy were analyzed. The cell results indicated a slight preference in terms of cell survival and adhesion for nanostructure TiO(2) with a more hydrophilic character and the electrochemical data revealed that such features are connected with better stability in artificial saliva. The roughness seems to be not conclusive for this case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call