Abstract

The dependence of friction and wear behavior on nanosodium titanate whisker and aramid pulp in a designed resin-based brake material was systematically analyzed. Higher contents of aramid pulp enhanced the hardness of the brake materials. In addition, the maximum impact energy of the material reached 0.392 J/cm2 where the ratio of aramid pulp to sodium titanate whisker is 0.75. At same time, the friction coefficient was stable between 0.38 and 0.45, and the wear rate was 5%. The samples with higher contents of nanosodium titanate whiskers and aramid pulp showed more uniform furrows, fewer delaminated craters, more moderate layers transfer and more stable contact plateaus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.