Abstract

For strip steel with the thickness of 1.6 mm, the yield and tensile strengths as high as 760 and 850 MPa, respectively, were achieved using the compact strip production technology. Precipitates in the steel were characterized by scanning and transmission electron microscopy to elucidate the strengthening mechanism. In addition, intragranular misorientation, Kernel average misorientation, and stored energy were measured using electron backscatter diffraction for crystallographic analysis of ferrite grains containing precipitates and their neighbors without precipitates. It is found that precipitates in specimens primarily consist of TiC and Ti4C2S2. Ferrite grains containing precipitates exhibit the high Taylor factor as well as the crystallographic orientations with {012}, {011}, {112}, or {221} plane parallel to the rolling plane. Compared with the intragranular orientation of adjoining grains, the intragranular misorientation of grains containing precipitates fluctuates more frequently and more mildly as a function of distance. Moreover, the precipitates can induce ferrite grains to store a relatively large amount of energy. These results suggest that a correlation exists between precipitation in ferrite grains and grain crystallographic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.