Abstract

Nano-graphene lubricating oil with appropriate concentration shows excellent performance in reducing friction and wear under different working conditions of diesel engines, and has been widely concerned. Lubricating oil has a significant impact on particulate matter (PM) emissions. At present, there are few studies on the impact of nano-graphene lubricating oil on the physicochemical properties of PM. In order to comprehensively evaluate the impact of nano-graphene lubricating oil on diesel engines, this paper mainly focused on the effects of lubricating oil nano-graphene additives on the particle size distribution and physicochemical properties of PM. The results show that, compared with pure lubricating oil, the total number of nuclear PM and accumulated PM of nano-graphene lubricating oil is significantly increased. The fractal dimension of PM of nano-graphene lubricating oil increases and its structure becomes more compact. The average fringe separation distance of basic carbon particles decreases, the average fringe length increases. The degree of ordering and graphitization of basic carbon particles are higher. The fringe tortuosity of basic carbon particles decreases, and the fluctuation of carbon layer structure of basic carbon particles decreases. Aliphatic substances in PM are basically unchanged, aromatic components and oxygen functional groups increase. The initial PM oxidation temperature and burnout temperature increase, the maximum oxidation rate temperature and combustion characteristic index decrease, and the activation energy increases, making it more difficult to oxidize. This was mainly caused by the higher graphitization degree of PM of nano-graphene lubricating oil and the increased content of aromatic substances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.