Abstract

Heavy metals and petroleum hydrocarbon pollution are important environmental problems. This research was conducted to evaluate the effect of nano Fe-oxide and endophytic fungus (P. indica) on petroleum hydrocarbons degradation in an arsenic and petroleum hydrocarbons contaminated soil using barley plant. Treatments consisted of the presence (E+) and the absence (E-) of P.indica fungi, soil contaminated with As in the rates of 0 (AS0), 12 (AS12) and 24 (As24) mg As /kg of soil, and application of 0 (Fe0) and 1% (Fe1) (W/W) nano Fe-oxide. The plant used in this study was the barley plant. After 7weeks, the root and shoot As concentration was measured using atomic absorption spectroscopy. The concentration of total soil petroleum hydrocarbon (TPHS) was measured using GC-mass. Application of nano Fe-oxide in soil treated with 12 and 24mg As/kg soil decreased root As concentration by 30 and 20.6%, respectively. The presence of P.indica caused a significant reduction in the shoot As concentration. With increasing shoot Fe concentration the shoot As concentration was decreased. The highest TPHS degradation was observed in non As-polluted soil that containing 1% (W/W) nano Fe-oxide in the presence of P.indica, while the lowest that was in As polluted soil (24mg As/kg soil) without applying nano Fe-oxide and in the absence of P.indica. Increasing soil sorption properties due to nano Fe-oxide application had significant effect on TPHS degradation in the presence of P.indica. However the role of soil condition on the amount of TPHS degradation cannot be ignored.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call