Abstract

PurposeThis paper aims to investigate the preparation of AlN and Al2O3, as well as the effect of nano-AlN and nano-Al2O3, on friction and wear properties of copper-steel clad plate immersed in the lubricants.Design/methodology/approachNano-AlN or nano-Al2O3 (0.1, 0.2, 0.3, 0.4 and 0.5 Wt.%) functional fluids were prepared. Their tribological properties were tested by an MRS-10A four-ball friction tester and a ball-on-plate configuration, and scanning electron microscope observed the worn surface of the plate.FindingsAn increase in nano-AlN and Al2O3 content enhances the extreme pressure and anti-wear performance of the lubricant. The best performance is achieved at 0.5 Wt.% of nano-AlN and 0.3 Wt.% of nano-Al2O3 with PB of 834 N and 883 N, a coefficient of friction (COF) of approximately 0.07 and 0.06, respectively. Furthermore, the inclusion of nano-AlN and nano-Al2O3 particles in the lubricant enhances its extreme pressure performance and reduces wear, leading to decreased wear spot depth. The lubricating effect of the nano-Al2O3 lubricant on the surface of the copper-steel composite plate is slightly superior to that of the nano-AlN lubricant, with a COF reaching 0.07. Both lubricants effectively fill and lubricate the holes on the surface of the copper-steel composite plate.Originality/valueAlN and Al2O3 as water-based lubricants have excellent lubrication performance and can reduce the COF. It can provide some reference for the practical application of nano-water-based lubricants.Peer reviewThe peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0255/

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call