Abstract

The effects of two deoxyribonucleic acid (DNA) gyrase inhibitors, nalidixic acid and novobiocin, on the gene expression of plasmid pBR322 in Escherichia coli minicells were studied. Quantitative estimates of the synthesis of pBR322-coded polypeptides in novobiocin-treated minicells showed that the synthesis of a polypeptide of molecular weight of 34,000 (the tetracycline resistance protein) was reduced to 11 to 20% of control levels, whereas the amount of a polypeptide of 30,500 (the beta-lactamase precursor) was increased to as much as 200%. Nalidixic acid affected the synthesis of the tetracycline resistance protein similarly to novobiocin, although to a lesser extent. The effects of nalidixic acid were not observed in a nalidixic-resistant mutant; those induced by novobiocin were only partially suppressed in a novobiocin-resistant mutant. The synthesis of one of the inducible tetracycline-resistant proteins (34,000) coded by plasmid pSC101 was also reduced in nalidixic acid- and novobiocin-treated minicells. These results suggest that the gyrase inhibitors modified the interaction of ribonucleic acid polymerase with some promoters, either by decreasing the supercoiling density of plasmid DNA or by altering the association constant of the gyrase to specific DNA sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.