Abstract
Over-production of reactive oxygen species (ROS) and resulting oxidative stress contribute to retinal damage in vascular diseases that include diabetic retinopathy, retinopathy of prematurity and major retinal vessel occlusions. NADPH oxidase (Nox) proteins are professional ROS-generating enzymes, and therapeutic targeting in these diseases has strong appeal. Pharmacological inhibition of Nox4 reduces the severity of experimental retinal vasculopathy. We investigated the potential application of this drug approach in humans. Differential Nox enzyme expression was studied by real-time-quantitative polymerase chain reaction in primary human retinal endothelial cell isolates and a characterized human retinal endothelial cell line. Oxidative stress was triggered chemically in endothelial cells, by treatment with dimethyloxalylglycine (DMOG; 100 μM); Nox4 and vascular endothelial growth factor (VEGFA) transcript were measured; and production of ROS was detected by 2',7'-dichlorofluorescein. DMOG-stimulated endothelial cells were treated with two Nox1/Nox4 inhibitors, GKT136901 and GKT137831; cell growth was monitored by DNA quantification, in addition to VEGFA transcript and ROS production. Nox4 (isoform Nox4A) was the predominant Nox enzyme expressed by human retinal endothelial cells. Treatment with DMOG significantly increased endothelial cell expression of Nox4 over 72 h, accompanied by ROS production and increased VEGFA expression. Treatment with GKT136901 or GKT137831 significantly reduced DMOG-induced ROS production and VEGFA expression by endothelial cells, and the inhibitory effect of DMOG on cell growth. Our findings in experiments on activated human retinal endothelial cells provide translational corroboration of studies in experimental models of retinal vasculopathy and support the therapeutic application of Nox4 inhibition by GKT136901 and GKT137831 in patients with retinal vascular diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.