Abstract

The transpeptidation activity of γ-glutamyltranspeptidase from Geobacillus thermodenitrificans (GthGT) is negligible and the enzyme is highly thermostable. Here we have examined the effect of concentrated NaCl solutions on structure, stability, dynamics and enzymatic activity of GthGT. The protein exhibited hydrolytic activity over a broad range of NaCl concentrations. Even at 4.0M NaCl, GthGT retained more than 90% of the initial activity and showed unaltered fluorescence emission, secondary structure and acrylamide quenching on tryptophan fluorescence. Furthermore, at 2.8M and 4.0M NaCl the temperature-induced unfolding profiles are dramatically changed with large (>20°C) positive shifts in the denaturation temperature. These features make GthGT an ideal system to be used in industrial processes that require high temperatures and high-salt environments. A general explanation of the NaCl effect by means of a statistical thermodynamic model is also provided, together with an analysis of residue distribution between protein surface and interior in 15 non-redundant families of halophilic and non-halophilic proteins. The results are in line with a comparative sequence and structural analysis between halophilic and non-halophilic γ-glutamyltranspeptidases which revealed that a major role in halotolerance should be played by solvent exposed negatively charged residues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.