Abstract

This study aims to investigate the effect of Na doping on the structure, electrical, and electrochemical properties of lithium-rich cathode material. Pristine Li1.2Ni0.13Mn0.54Co0.13O2 (LNMC) and Na-doped Li1.17Na0.03Ni0.13Mn0.54Co0.13O2 (Na-LNMC) layered lithium-rich/manganese-rich compounds are prepared by the sol-gel method. The structural and morphological characterization reveals that the Na doping leads to an ordered structure with regular cubic morphology and enlarged Li layer spacing. This enlargement facilitates the diffusion of lithium ion inside the bulk lattice. Electrochemical impedance spectroscopy (EIS) shows that doping by a small amount of Na (3 mol%) decreases the impedance by more than three orders of magnitude and enhances the diffusion of lithium ions in the same proportion. This remarkable improvement in the conductivity and diffusion coefficient of lithium ions of Na-LNMC improves its capacity retention. In addition, this structure and mode of preparation results in “U-shaped” capacity vs. cycle curves, similar to the curves observed for transition metal oxide electrodes, resulting in an exceptional cycle life, tested for up to 400 cycles at 2C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.