Abstract
Na doped TiO2 nanorod structures have been prepared by one-step hydrothermal method. Structural analysis of undoped and doped TiO2 nanorod samples revealed the formation of single rutile phase structure. XRD plots confirms the effective substitution of Ti4+ with Na+ in the samples by exhibiting a slight shift towards the lower angle in the 2θ value of the diffraction peaks compared to undoped TiO2 sample. The distribution of sodium in TiO2 lattice is confirmed by morphological and EDS analysis. FESEM images of doped samples revealed the formation of structures in the form of nanorods for 2 and 4% of dopant and then to nanoflowers on increasing the amount of dopant to 6%. TEM analysis revealed the formation of nanorods with a diameter about 250 nm. Each nanorod was found to be formed of individual thin nanorods with approx diameter of 25 nm. The presence of sodium (atomic% = 7.60) in the nanorods was also substantiated by EDS studies. From optical studies, with increase in dopant concentration, the absorption edge is seen to be shifted towards the longer wavelength and bandgap tends to show red shift with values varying from 3.0 to 2.74 eV.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.