Abstract

This study investigated the environment-friendly production and characterization of zinc oxide nanoparticles (ZnO NPs) doped with sodium (Na) and aluminum (Al) metals to decrease the photocatalytic activity of ZnO for use in sunscreen. The metal-doped zinc oxide (ZnO) materials were prepared by the microwave method using extracts of Averrhoa carambola, also known as star fruit, as a reducing agent. The effects of metal-ion doping on the crystal structure, morphology, and optical characteristics of ZnO were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), and ultraviolet-visible (UV-Vis) spectroscopy. The sun protection factor (SPF) of the sunscreen formulations containing undoped ZnO, Na-doped ZnO (Na/ZnO), and Al-doped ZnO (Al/ZnO) NPs were found to be 10.10, 25.10, and 43.08, respectively. Therefore, Na/ZnO and Al/ZnO showed increased SPF. Additionally, the prepared nanomaterials and sunscreens were effective against Gram-positive and Gram-negative bacteria and showed antioxidant activities. The methylene blue (MB) degradation was used to evaluate the photocatalytic activities of the undoped ZnO, Na/ZnO, and Al/ZnO NPs, which were found to be 66%, 46%, and 38%, respectively. Therefore, due to the structural defects of ZnO NPs, their photocatalytic activity was decreased with Na- and Al- doping. Additionally, Al/ZnO is an ideal candidate as an ingredient in sunscreens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call