Abstract

This study was aimed at determining the effect of fish oil supplementation on copper-catalyzed oxidation of low density lipoproteins (LDL) from nine hypertriglyceridemic human subjects. A rapid headspace gas chromatographic method was used to measure the volatile oxidation products from LDL. Propanal and hexanal were the major volatile products formed in the oxidation of n-3 and n-6 polyunsaturated fatty acids (PUFA), respectively. Fish oil supplementation resulted in a significant increase in propanal formation from 3.7 to 13.4 nmol/mL LDL (P < 0.01); it also resulted in small decreases in pentanal formation from 14.7 to 11.4 nmol/mL LDL and in hexanal formation from 138 to 108 nmol/mL LDL (P < 0.05). The changes in peroxidation products paralleled the changes in LDL composition, which showed a significant increase in n-3 PUFA from 3.2 to 14.6% (P < 0.01) and a decrease in n-6 PUFA from 43.7 to 35.0% (P < 0.05). Propanal formation was highly and significantly correlated with n-3 PUFA content (r = 0.950, P < 0.001). Since total volatiles remained unchanged, this indicated that the two groups of LDL samples did not differ in overall oxidative susceptibility. Although fish oil intake did not alter the oxidative susceptibility of LDL, the chemically modified LDL particles generated a distinct pattern of volatile oxidation products that reflected changes in their fatty acid composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.