Abstract
The denaturation of recombinant horse L-chain apoferritin (rLF), which is composed of 24 L-chain subunits, in acidic solution was studied. Using two rLF mutants, lacking four (Fer4) or eight (Fer8) N-terminal amino acid residues, the effect of N-terminal residues on the protein's stability was investigated. Of the two mutants and wild-type rLF, the tertiary and secondary structures of Fer8 were found to be most sensitive to an acidic environment. The Fer8 protein dissociated easily into subunit dimers at or below pH 2.0. Comparing the crystal structures of the mutant proteins, deletion of the N-terminal residues was found to result in fewer inter- and intra-subunit hydrogen bonds. The loss of these bonds is assumed to be responsible for lower endurance against acidic denaturation in N-terminus-deleted mutants. These results indicated that the inter- and intra-subunit hydrogen bonds of N-terminal residues affect the denaturation, especially oligomer formation of apoferritin subunits and will be of use in designing ferritin-based nanodevices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.