Abstract

Whether the activation of metabolically sensitive skeletal muscle afferents (i.e., muscle metaboreflex) influences cardiac baroreflex responsiveness remains incompletely understood. A potential explanation for contrasting findings of previous reports may be related to differences in the magnitude of muscle metaboreflex activation utilized. Therefore, the present study was designed to investigate the influence of graded intensities of muscle metaboreflex activation on cardiac baroreflex function. In eight healthy subjects (24 +/- 1 yr), the graded isolation of the muscle metaboreflex was achieved by post-exercise ischemia (PEI) following moderate- (PEI-M) and high- (PEI-H) intensity isometric handgrip performed at 35% and 45% maximum voluntary contraction, respectively. Beat-to-beat heart rate (HR) and blood pressure were measured continuously. Rapid pulse trains of neck pressure and neck suction (+40 to -80 Torr) were applied to derive carotid baroreflex stimulus-response curves. Mean blood pressure increased significantly from rest during PEI-M (+13 +/- 3 mmHg) and was further augmented during PEI-H (+26 +/- 4 mmHg), indicating graded metaboreflex activation. However, the operating point gain and maximal gain (-0.51 +/- 0.09, -0.48 +/- 0.13, and -0.49 +/- 0.12 beats.min(-1).mmHg(-1) for rest; PEI-M and PEI-H) of the carotid-cardiac baroreflex function curve were unchanged from rest during PEI-M and PEI-H (P > 0.05 vs. rest). Furthermore, the carotid-cardiac baroreflex function curve was progressively reset rightward from rest to PEI-M to PEI-H, with no upward resetting. These findings suggest that the muscle metaboreflex contributes to the resetting of the carotid baroreflex control of HR; however, it would appear not to influence carotid-cardiac baroreflex responsiveness in humans, even with high-intensity activation during PEI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.