Abstract

Multi-walled carbon nanotubes (MWCNTs) were used to optimize the microstructure and improve the fracture properties of hot-pressed carbon fiber-reinforced ZrB2-based ultra-high temperature ceramic composites. Microstructure analysis indicated that the introduction of MWCNTs effectively reduced the carbon fiber degradation and prevented fiber-matrix interfacial reaction during processing. Due to the presence of MWCNTs, the matrix contained fine ZrB2 grains and in-situ formed nano-sized SiC/ZrC grains. The fracture properties were evaluated using the single edge-notched beam (SENB) test. The fracture toughness and work of fracture of the Cf/ZrB2-based composite with MWCNTs were 7.0±0.4MPam1/2 and 379±34J/m2, respectively, representing increases of 59% and 87% compared to those without MWCNTs. The excellent fracture properties are attributed to the moderate interfacial bonding between the fibers and matrix, which favour the toughening mechanisms, such as fiber bridging, fiber pull-out and crack deflection at interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.